Generate ML-powered predictive insights and optimization recommendations from patterns
Generate ML-powered predictive insights and optimization recommendations from patterns
/plugin marketplace add bejranonda/LLM-Autonomous-Agent-Plugin-for-Claude/plugin install bejranonda-autonomous-agent@bejranonda/LLM-Autonomous-Agent-Plugin-for-Claudelearn/Generate advanced predictive insights, optimization recommendations, and trend analysis using machine learning-inspired algorithms that learn from historical patterns to continuously improve prediction accuracy.
/learn:predict [OPTIONS]
Examples:
/learn:predict # Comprehensive predictive analytics report
/learn:predict --action quality-trend # Predict quality trends for next 7 days
/learn:predict --action optimal-skills # Recommend optimal skills for task
/learn:predict --action learning-velocity # Predict learning acceleration
/learn:predict --action opportunities # Identify optimization opportunities
/learn:predict --action accuracy # Check prediction accuracy metrics
Predicts future quality scores with confidence intervals:
Features:
Use Cases:
Recommends best skills for specific tasks using historical performance:
Features:
Use Cases:
Predicts learning acceleration and skill acquisition rate:
Features:
Use Cases:
Identifies improvement areas using pattern analysis:
Features:
Use Cases:
Complete predictive analytics with executive summary:
Features:
Use Cases:
--action quality-trend # Predict quality trends (default: 7 days)
--action optimal-skills # Recommend optimal skills (default: 3 skills)
--action learning-velocity # Predict learning acceleration (default: 14 days)
--action opportunities # Identify optimization opportunities
--action accuracy # Check prediction accuracy metrics
--action comprehensive # Generate complete report (default)
--days <number> # Prediction horizon in days (default: 7)
--task-type <type> # Task type for skill prediction (default: general)
--top-k <number> # Number of top skills to recommend (default: 3)
--dir <directory> # Custom patterns directory (default: .claude-patterns)
{
"prediction_type": "quality_trend",
"days_ahead": 7,
"predictions": [
{
"day": 1,
"predicted_quality": 87.5,
"trend_direction": "improving"
}
],
"confidence_score": 85.2,
"recommendations": [
"📈 Strong positive trend detected - maintain current approach"
]
}
{
"prediction_type": "optimal_skills",
"task_type": "refactoring",
"recommended_skills": [
{
"skill": "code-analysis",
"confidence": 92.5,
"success_rate": 89.2,
"recommendation_reason": "High success rate | Strong quality impact"
}
],
"prediction_confidence": 88.7
}
{
"prediction_type": "learning_velocity",
"days_ahead": 14,
"current_velocity": {
"avg_quality": 78.3,
"success_rate": 0.8247
},
"predictions": [
{
"day": 7,
"predicted_quality": 85.9,
"learning_acceleration": 1.02
}
],
"learning_acceleration_factor": "2% daily improvement"
}
The predictive analytics engine integrates with all learning system components:
Enhanced Patterns Database (.claude-patterns/enhanced_patterns.json)
+-- Historical task outcomes
+-- Skill performance metrics
+-- Agent effectiveness data
+-- Quality score evolution
Predictions Database (.claude-patterns/predictions.json)
+-- Quality trend predictions
+-- Skill recommendation accuracy
+-- Learning velocity forecasts
+-- Optimization outcomes
Insights Database (.claude-patterns/insights.json)
+-- Optimization opportunities
+-- Performance bottlenecks
+-- Improvement recommendations
+-- Strategic insights
# Predict quality for upcoming sprint
/predictive-analytics --action quality-trend --days 14
# Identify optimization opportunities for sprint
/predictive-analytics --action opportunities
# Get comprehensive report for planning
/predictive-analytics --action comprehensive
# Analyze team learning velocity
/predictive-analytics --action learning-velocity
# Check prediction accuracy to build confidence
/predictive-analytics --action accuracy
# Identify skill gaps and opportunities
/predictive-analytics --action optimal-skills --task-type code-review
# Weekly optimization review
/predictive-analytics --action opportunities
# Quality trend monitoring
/predictive-analytics --action quality-trend --days 7
# Skill optimization recommendations
/predictive-analytics --action optimal-skills --top-k 5
--------|-----|--------|---------| | Prediction Engine | <2% | ~100MB | ~5MB (prediction history) | | Data Analysis | <1% | ~50MB | Minimal (reads existing data) | | Report Generation | <1% | ~30MB | None |
| Action | Average | Max | Data Required |
|---|---|---|---|
| Quality Trend | 50-100ms | 200ms | 5+ historical data points |
| Optimal Skills | 30-80ms | 150ms | 3+ skill usage instances |
| Learning Velocity | 40-120ms | 250ms | 7+ days of activity |
| Opportunities | 100-200ms | 400ms | 10+ task patterns |
| Comprehensive | 200-500ms | 1s | All data sources |
# Check available learning data
ls -la .claude-patterns/
# Initialize learning system if needed
/learn-patterns
# Run some tasks to generate data
/auto-analyze
/quality-check
# Generate more historical data for better predictions
/auto-analyze
/pr-review
/static-analysis
# Wait for more data points (minimum 5-10 needed)
/predictive-analytics --action accuracy
# Use specific action instead of comprehensive report
/predictive-analytics --action quality-trend
# Reduce prediction horizon for faster results
/predictive-analytics --action quality-trend --days 3
import requests
# Get comprehensive predictive analytics
response = requests.post('/predictive-analytics')
analytics = response.json()
print("Quality Trend:", analytics['quality_trend_prediction'])
print("Top Skills:", analytics['optimal_skills_prediction'])
print("Learning Velocity:", analytics['learning_velocity_prediction'])
// Get optimization opportunities
fetch('/predictive-analytics', {
method: 'POST',
body: JSON.stringify({ action: 'opportunities' })
})
.then(response => response.json())
.then(data => {
console.log('Opportunities:', data.optimization_opportunities.opportunities);
});
Planned Features (v3.3+):
This predictive analytics system provides advanced insights that help optimize performance, predict future trends, and identify improvement opportunities - all while continuously learning from every prediction to become smarter over time.