Start FULL mode workflow for complex features with RLM Runtime integration
Executes complex multi-phase development workflows with AI planning, safe code execution, and automated testing.
/plugin marketplace add snipara/snipara-claude/plugin install snipara@snipara-pluginsStarting FULL mode for complex development (token budget: ~8-15K).
Best for:
Workflow:
Phase 1: Context Loading
rlm_shared_context()rlm_recall("$ARGUMENTS progress")rlm_context_query("$ARGUMENTS", max_tokens=8000)Phase 2: Planning
4. Generate plan: rlm_plan("$ARGUMENTS")
5. Decompose: rlm_decompose("$ARGUMENTS", max_depth=2)
6. Upload spec (if exists): rlm_upload_document(path="docs/features/...", content="...")
Phase 3: Implementation (Chunk-by-Chunk with RLM)
For each chunk:
7. Query context: rlm_context_query(query="chunk task", max_tokens=6000)
8. Execute with RLM Runtime:
rlm run --env docker "
Implement: {chunk_task}
Context: {snipara_context}
Steps:
1. Write implementation
2. Write tests
3. Run tests
4. Return results
"
rlm_remember(type="decision", content="...")Phase 4: Verification 10. Run full test suite with RLM:
rlm run --env docker "
Run full test suite:
- pytest
- pnpm lint
- pnpm type-check
- SKIP_ENV_VALIDATION=true pnpm build
"
Phase 5: Documentation
11. Upload implementation: rlm_upload_document()
12. Store summary: rlm_store_summary()
Phase 6: Session Save
13. Remember progress: rlm_remember(type="context", content="Completed X, next: Y")
View Execution:
rlm logsrlm visualizeLet me start Phase 1 for: $ARGUMENTS