Generate production-ready Databricks Delta Lake SQL from `unify.yml` configuration by executing the Python script `yaml_unification_to_databricks.py`.
Generates production-ready Databricks Delta Lake SQL from unify.yml configuration files.
/plugin marketplace add treasure-data/aps_claude_tools/plugin install treasure-data-cdp-hybrid-idu-plugins-cdp-hybrid-idu@treasure-data/aps_claude_toolsGenerate production-ready Databricks Delta Lake SQL from unify.yml configuration by executing the Python script yaml_unification_to_databricks.py.
Check:
Use Bash tool to execute:
python3 /path/to/plugins/cdp-hybrid-idu/scripts/databricks/yaml_unification_to_databricks.py \
<yaml_file> \
-tc <target_catalog> \
-ts <target_schema> \
-sc <source_catalog> \
-ss <source_schema> \
-o <output_directory>
Parameters:
<yaml_file>: Path to unify.yml-tc: Target catalog name-ts: Target schema name-sc: Source catalog (optional, defaults to target catalog)-ss: Source schema (optional, defaults to target schema)-o: Output directory (optional, defaults to databricks_sql)Track:
Output:
✓ Databricks SQL generation complete!
Generated Files:
• databricks_sql/unify/01_create_graph.sql
• databricks_sql/unify/02_extract_merge.sql
• databricks_sql/unify/03_source_key_stats.sql
• databricks_sql/unify/04_unify_loop_iteration_01.sql
... (up to iteration_N)
• databricks_sql/unify/05_canonicalize.sql
• databricks_sql/unify/06_result_key_stats.sql
• databricks_sql/unify/10_enrich_*.sql
• databricks_sql/unify/20_master_*.sql
• databricks_sql/unify/30_unification_metadata.sql
• databricks_sql/unify/31_filter_lookup.sql
• databricks_sql/unify/32_column_lookup.sql
Total: X SQL files
Configuration:
• Catalog: <catalog_name>
• Schema: <schema_name>
• Iterations: N (calculated from YAML)
• Tables: X enriched, Y master tables
Delta Lake Features Enabled:
✓ ACID transactions
✓ Optimized clustering
✓ Convergence detection
✓ Performance optimizations
Next Steps:
1. Review generated SQL files
2. Execute using: /cdp-hybrid-idu:hybrid-execute-databricks
3. Or manually execute in Databricks SQL editor
If script fails:
Verify:
Report applied conversions:
Expert backend architect specializing in scalable API design, microservices architecture, and distributed systems. Masters REST/GraphQL/gRPC APIs, event-driven architectures, service mesh patterns, and modern backend frameworks. Handles service boundary definition, inter-service communication, resilience patterns, and observability. Use PROACTIVELY when creating new backend services or APIs.
Build scalable data pipelines, modern data warehouses, and real-time streaming architectures. Implements Apache Spark, dbt, Airflow, and cloud-native data platforms. Use PROACTIVELY for data pipeline design, analytics infrastructure, or modern data stack implementation.