Train ML models with scikit-learn, PyTorch, TensorFlow. Use for classification/regression, neural networks, hyperparameter tuning, or encountering overfitting, underfitting, convergence issues.
/plugin marketplace add secondsky/claude-skills/plugin install ml-model-training@claude-skillsThis skill inherits all available tools. When active, it can use any tool Claude has access to.
references/pytorch-training.mdreferences/tensorflow-keras.mdTrain machine learning models with proper data handling and evaluation.
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
# Load and clean data
df = pd.read_csv('data.csv')
df = df.dropna()
# Encode categorical variables
le = LabelEncoder()
df['category'] = le.fit_transform(df['category'])
# Split data (70/15/15)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)
# Scale features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_val)
print(classification_report(y_val, y_pred))
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.layers(x)
model = Model(X_train.shape[1])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCELoss()
for epoch in range(100):
model.train()
optimizer.zero_grad()
output = model(X_train_tensor)
loss = criterion(output, y_train_tensor)
loss.backward()
optimizer.step()
| Task | Metrics |
|---|---|
| Classification | Accuracy, Precision, Recall, F1, AUC-ROC |
| Regression | MSE, RMSE, MAE, R² |
PyTorch: See references/pytorch-training.md for complete training with:
TensorFlow/Keras: See references/tensorflow-keras.md for:
Do:
Don't:
Problem: Scaling or transforming data before splitting leads to test set information leaking into training.
Solution: Always split data first, then fit transformers only on training data:
# ✅ Correct: Fit on train, transform train/val/test
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val) # Only transform
X_test = scaler.transform(X_test) # Only transform
# ❌ Wrong: Fitting on all data
X_all = scaler.fit_transform(X) # Leaks test info!
Problem: Training on imbalanced datasets (e.g., 95% class A, 5% class B) leads to models that predict only the majority class.
Solution: Use class weights or resampling:
from sklearn.utils.class_weight import compute_class_weight
# Compute class weights
class_weights = compute_class_weight('balanced', classes=np.unique(y_train), y=y_train)
model = RandomForestClassifier(class_weight='balanced')
# Or use SMOTE for oversampling minority class
from imblearn.over_sampling import SMOTE
smote = SMOTE()
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
Problem: Complex models memorize training data, perform poorly on validation/test sets.
Solution: Add regularization techniques:
# Dropout in PyTorch
nn.Dropout(0.3)
# L2 regularization in scikit-learn
RandomForestClassifier(max_depth=10, min_samples_split=20)
# Early stopping in Keras
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model.fit(X_train, y_train, validation_data=(X_val, y_val), callbacks=[early_stop])
Problem: Results are not reproducible across runs, making debugging and comparison impossible.
Solution: Set all random seeds:
import random
import numpy as np
import torch
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)
Problem: Optimizing hyperparameters on test set leads to overfitting to test data.
Solution: Use validation set for tuning, test set only for final evaluation:
from sklearn.model_selection import GridSearchCV
# ✅ Correct: Tune on train+val, evaluate on test
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [5, 10, 15]}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train) # Cross-validation on training set
best_model = grid_search.best_estimator_
# Final evaluation on held-out test set
final_score = best_model.score(X_test, y_test)
Load reference files when you need:
references/pytorch-training.md for complete training loops with early stopping, learning rate scheduling, and checkpointingreferences/tensorflow-keras.md for callback usage, custom training loops, and mobile deployment with TFLiteCreating algorithmic art using p5.js with seeded randomness and interactive parameter exploration. Use this when users request creating art using code, generative art, algorithmic art, flow fields, or particle systems. Create original algorithmic art rather than copying existing artists' work to avoid copyright violations.
Applies Anthropic's official brand colors and typography to any sort of artifact that may benefit from having Anthropic's look-and-feel. Use it when brand colors or style guidelines, visual formatting, or company design standards apply.
Create beautiful visual art in .png and .pdf documents using design philosophy. You should use this skill when the user asks to create a poster, piece of art, design, or other static piece. Create original visual designs, never copying existing artists' work to avoid copyright violations.